Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 306(10): 2484-2513, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37010952

RESUMEN

This article provides an ontogenetically-based comparative description of the Guercy 3 partial child's maxilla with Rdm2 -RM1 and unerupted RI2 -RP4 from Baume Moula-Guercy (MIS 5e) and examines its affinities to European and Middle Eastern Middle-to-Late Pleistocene (≈MIS 14-MIS 1) Homo. Description of the Guercy 3 maxilla and dentition (7.0 year ± 0.9 month) is based on observations of original fossils, casts, CT scans, literature descriptions, and virtual reconstructions. Our ontogenetic sample comprises a Preneanderthal-Neanderthal group and a Homo sapiens group. These groups are subdivided into (1) Preneanderthals (≈MIS 14-9), Early Neanderthals (MIS 7-5e), and Late Neanderthals (MIS 5d-3), and (2) Middle (MIS 5), Upper (MIS 3-2), and Late Upper Paleolithic (≈MIS 1), and recent H. sapiens. Standard techniques were employed for measurements and developmental age determinations.The Guercy 3 maxilla lacks changes found in Late Neanderthals, including the positioning of the root of the zygomatic process, infraorbital and nasal plates, premaxilla, buccal and labial alveolus, maxillary sinus, nasal cavity, and verticality of anterior tooth implantation. The morphology of the Guercy 3 maxilla more closely approximates that of Sima de los Huesos Preneanderthals, while the dentition more closely approximates the Early-Late Neanderthal condition. Maxillary remains of children and juveniles between MIS 14-MIS 5e are rare, and the available sample is fragmentary and distorted. Although fragmentary, the Guercy 3 maxilla is undistorted and provides new insights into the evolution of the midface in Neanderthals.


Asunto(s)
Hominidae , Hombre de Neandertal , Humanos , Niño , Animales , Hombre de Neandertal/anatomía & histología , Maxilar/anatomía & histología , Cráneo/anatomía & histología , Francia , Fósiles , Hominidae/anatomía & histología
2.
Anat Rec (Hoboken) ; 306(3): 564-593, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36336759

RESUMEN

We provide the first comparative description of the endocranium of the Guercy 1 Early Neanderthal and examine its affinities to Preneanderthals, Neanderthals, and Homo sapiens. The Guercy 1 cranium derives from deposits chronostratigraphically and biostratigraphically dated to the Eemian Interglacial (MIS 5e). For comparative purposes, we compiled a sample of European and Southwest Asian subadult and adult Middle-to-Late Pleistocene hominins (≈MIS 12-MIS 1; N = 65). We sampled both a Preneanderthal-Neanderthal group and a Homo sapiens group. The Preneanderthal-Neanderthal group was further divided into three time-successive subgroups defined by associated MIS stages. Metric and morphological observations were made on original fossils and physical and virtual endocranial reconstructions. Guercy 1 and other Early Neanderthals, differ from Preneanderthals by increased development of the prefrontal cortex, precentral and postcentral gyri, inferior parietal lobule, and frontoparietal operculum. Early Neanderthal differ, in general, from Late Neanderthals by exhibiting less development in most of the latter brain structures. The late group additionally differentiates itself from the early group by a greater development of the rostral superior parietal lobule, angular gyrus, superior and middle temporal gyri, and caudal branches of the superior temporal gyrus. Endocranial morphology assessed along the Preneanderthal-Neanderthal sequence show that brain structures prominent in Preneanderthals are accentuated in Early-to-Late Neanderthals. However, both the Early and Late groups differentiate themselves by also showing regionally specific changes in brain development. This pattern of morphological change is consistent with a mosaic pattern of neural evolution in these Middle-to-Late Pleistocene hominins.


Asunto(s)
Hominidae , Hombre de Neandertal , Adulto , Animales , Humanos , Hombre de Neandertal/anatomía & histología , Hominidae/anatomía & histología , Cráneo/anatomía & histología , Encéfalo , Francia , Fósiles , Evolución Biológica
3.
Am J Phys Anthropol ; 175(1): 201-226, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33644865

RESUMEN

OBJECTIVES: We provide the first comparative description of the Guercy 1 cranium and isolated cranial fragments from Baume Moula-Guercy and examine their affinities to European Preneanderthals, Neanderthals, and Homo sapiens. MATERIALS AND METHODS: The Moula-Guercy hominins derive from deposits chronostratigraphically and biostratigraphically dated to the Eemian Interglacial (MIS 5e). For comparisons we compiled a sample of European and Southwest Asian subadult-adult Middle-to-Late Pleistocene hominins (≈MIS 14-MIS 2; N = 184). This sample represents a Preneanderthal-Neanderthal group and a H. sapiens group, both of which were further divided into three time-successive subgroups defined by associated marine isotope stages (MIS). Metric and morphological observations were made on the original fossils and a virtual reconstruction of Guercy 1. Developmental age and sex and the minimum-maximum number of individuals were assessed. RESULTS: Guercy 1 represents the remains of a late stage adolescent (≈15-16.0 years) female. Morphological and metric data combine to associate the total morphological pattern expressed in Guercy 1 with our MIS 7-MIS 5e ("Early Neanderthal") subgroup. Some features, especially those related to the frontal, suggest linkage to a paleodeme comprising the Moula-Guercy, Artenac, La Chaise Abri Suard and, possibly, the Biache-Saint-Vaast samples. DISCUSSION: Remains of MIS 7-MIS 5e Neanderthals are rare and fragmentary, especially those dated to the Last Interglacial. The Baume Moula-Guercy sample provides new insights into the total morphological pattern expressed in MIS 5e Neanderthals. Further, our results support earlier suggestions that MIS 7-MIS 5e European hominins represent a morphotype that is distinct from both earlier and later members of the Preneanderthal-Neanderthal group.


Asunto(s)
Hombre de Neandertal/anatomía & histología , Cráneo/anatomía & histología , Adulto , Animales , Antropología Física , Femenino , Francia , Humanos , Masculino
4.
J Hum Evol ; 95: 68-79, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27260175

RESUMEN

Gorilla systematics has received increased attention over recent decades from primatologists, conservationists, and paleontologists. Studies of geographic variation in DNA, skulls, and teeth have led to new taxonomic proposals, such as recognition of two gorilla species, Gorilla gorilla (western gorilla) and Gorilla beringei (eastern gorilla). Postcranial differences between mountain gorillas (G. beringei beringei) and western lowland gorillas (G. g. gorilla) have a long history of study, but differences between the limb bones of the eastern and western species have not yet been examined with an emphasis on geographic variation within each species. In addition, proposals for recognition of the Cross River gorilla as Gorilla gorilla diehli and gorillas from Tshiaberimu and Kahuzi as G. b. rex-pymaeorum have not been evaluated in the context of geographic variation in the forelimb and hindlimb skeletons. Forty-three linear measurements were collected from limb bones of 266 adult gorillas representing populations of G. b. beringei, Gorilla beringei graueri, G. g. gorilla, and G. g. diehli in order to investigate geographic diversity. Skeletal elements included the humerus, radius, third metacarpal, third proximal hand phalanx, femur, tibia, calcaneus, first metatarsal, third metatarsal, and third proximal foot phalanx. Comparisons of means and principal components analyses clearly differentiate eastern and western gorillas, indicating that eastern gorillas have absolutely and relatively smaller hands and feet, among other differences. Gorilla subspecies and populations cluster consistently by species, although G. g. diehli may be similar to the eastern gorillas in having small hands and feet. The subspecies of G. beringei are distinguished less strongly and by different variables than the two gorilla species. Populations of G. b. graueri are variable, and Kahuzi and Tshiaberimu specimens do not cluster together. Results support the possible influence of higher-altitude Pleistocene refugia on patterns of geographic variation in gorillas.


Asunto(s)
Huesos de la Extremidad Inferior/anatomía & histología , Huesos de la Extremidad Superior/anatomía & histología , Gorilla gorilla/anatomía & histología , Animales , Femenino , Gorilla gorilla/clasificación , Masculino
5.
Am J Phys Anthropol ; 152(4): 516-29, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24214384

RESUMEN

The hand and foot remains from Moula-Guercy cave (Ardèche, France) comprise 24 specimens of Eemian age (ca. 120 ka). The specimens include primarily complete elements, which are rare among the Moula-Guercy postcrania. The hand remains have several characteristic Neanderthal traits including a laterally facing (parasagittally oriented) second metacarpal-capitate articulation, a short styloid process, a wide proximal articular surface on the third metacarpal, and absolutely expanded apical tuberosities on the distal hand phalanges relative to modern humans. The foot remains include several incomplete elements along with an antimeric pair of naviculars, a medial cuneiform and cuboid, and a single complete element from each of the distal segments (one each: metatarsal, proximal foot phalanx, intermediate foot phalanx, distal foot phalanx). Consistent among the specimens are relatively wide diaphyses for length in the metatarsals and phalanges and large and prominent muscle attachments, both consistent with previously published Neanderthal morphology. The hand and foot collection from Moula-Guercy is an important dataset for future studies of Neanderthal functional morphology, dexterity, and behavior as it represents a previously undersampled time period for European Neanderthals.


Asunto(s)
Huesos del Pie/anatomía & histología , Fósiles , Huesos de la Mano/anatomía & histología , Hombre de Neandertal/anatomía & histología , Animales , Femenino , Francia , Masculino
6.
Int J Paleopathol ; 3(1): 48-53, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29539359

RESUMEN

Traumatically induced skeletal injuries are common and can be ascribed to a normal range of events occurring in an individual's lifetime. A subset of these trauma-induced injuries provides enhanced insight into cultural history. Such cases might include those referable to medico-surgical and religious/ritualistic practices. We describe prehistoric evidence and cultural implications of the traumatic insertion of an Ursus manual phalanx into the elbow of a living human. The injury healed and the phalanx remained in situ until death. The individual derives from the Ellis Landing shellmound and dates to a subphase of the Middle Period (≈500BC-300AD) in the California cultural sequence. The remains are of a 30-40 year-old female. Comparative data on arm morphology and pathological conditions present were collected (n=159). Three Ursus subspecies (n=15) were examined to identify the taxon represented by the phalanx. The described individual was probably wearing bear paw ornaments at the time she was crushed by a heavy object. During this event, a bear claw was driven into her cubital fossa, the basal phalangeal tubercle being impressed into the humerus. The wound healed completely. The presence of Ursus body parts indicates an elevated societal role for this female; most likely she was a shaman or healer.

7.
Am J Phys Anthropol ; 149(2): 172-80, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22729785

RESUMEN

Studies using synchrotron microtomography have shown that this radiographic imaging technique provides highly informative microanatomical data from modern and fossil bones and teeth without the need for physical sectioning. The method is considered to be nondestructive; however, researchers using the European Synchrotron Radiation Facility have reported that color changes sometimes occur in teeth during submicron scanning. Using the Advanced Light Source, we tested for color changes during micron-level scanning and for postexposure effects of ultraviolet light. We exposed a 2.0-mm wide strip (band) to synchrotron light in 32 specimens, using multiple energy levels and scan durations. The sample included modern and fossilized teeth and bone. After scanning, the specimens were exposed to fluorescent and direct ultraviolet light. All teeth showed color changes caused by exposure to synchrotron radiation. The resulting color bands varied in intensity but were present even at the lowest energy and shortest duration of exposure. Color bands faded during subsequent exposure to fluorescent and ultraviolet light, but even after extensive ultraviolet exposure, 67% (8/12) of UV-exposed teeth retained some degree of induced color. We found that the hydroxyapatite crystals, rather than the organic component, are the targets of change, and that diagenesis appears to impact color retention. Color changes have significance beyond aesthetics. They are visible indicators of ionization (chemical change) and, therefore, of potential physical damage. It is important for researchers to recognize that synchrotron microtomography may damage specimens, but adopting suitable safeguards and procedures may moderate or eliminate this damage.


Asunto(s)
Fósiles , Sincrotrones , Diente/química , Diente/efectos de la radiación , Microtomografía por Rayos X , Animales , Color , Fluorescencia , Humanos , Paleontología/métodos , Rayos Ultravioleta
8.
Anat Rec (Hoboken) ; 294(2): 199-216, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21234994

RESUMEN

Historically, the foramen magnum (FM) has been an integral component of studies on skull ontogeny and evolutionary transformations of cranial form. Although this foramen has been considered a single entity, we hypothesize that it comprises two functional matrices, a ventral matrix and a dorsal matrix. In general, the ventral matrix is related to locomotor functions, whereas the dorsal matrix is related to neurological functions and fluid flow dynamics. To test our hypothesis, we used a large ontogenetic sample of modern human crania (seventh fetal month to adult) to (1) delineate bony size and shape ontogeny for both the foramen and its dorsal and ventral units; (2) delineate the role of synchondroses in the observed growth patterns and rates; and (3) explore the relationship between FM and cranial size, shape, and growth. Detailed growth patterns and rates are established for the bony FM and its ventral and dorsal skeletal units. These data are supplemented by literature and observational data on embryonic and fetal FM ontogeny, soft tissue relationships, anomalous/pathological extremes of size, and craniocervical anatomy and locomotor functions. The hypothesis that the FM is composed of a ventral and a dorsal functional matrix is supported by observed ontogenetic differences between ventral and dorsal skeletal units, as well as by the soft tissue anatomy of these matrices. Further documentation of these matrices has the potential to significantly enhance our understanding of the ontogenetic and evolutionary transformations of skull base morphology.


Asunto(s)
Foramen Magno/anatomía & histología , Foramen Magno/crecimiento & desarrollo , Fósiles , Desarrollo Humano , Adolescente , Adulto , Alaska , Evolución Biológica , California , Niño , Preescolar , Foramen Magno/embriología , Humanos , Lactante , Análisis de Regresión , Adulto Joven
9.
Am J Phys Anthropol ; 119(2): 144-55, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12237935

RESUMEN

The relationship between the mandibular condyle and the crest of the mandibular notch (CMN) has historically entered into discussions of Neanderthal characteristics and was recently suggested to be autapomorphic in Neanderthals. The Neanderthal CMN has been described as intersecting the condyle in the middle, while the modern human CMN runs to the condyle's lateral end. A large lateral condylar tubercle (LCT) has also been observed in Neanderthals and thought to be related to medial (or less lateral) CMN position. In addition, the presence of a less lateral CMN early in ontogeny, as seen in the Amud 7 infant, has been argued to demonstrate great evolutionary divergence in Neanderthals. Using a scoring system for each trait, this study first examines the expression of CMN position and LCT size in 102 adult modern humans and in samples of Neanderthals and other fossil Homo. Then, CMN position is scored in 208 subadult modern humans to elucidate the ontogeny of this trait. Results show that CMN position is not autapomorphic in Neanderthals, but Neanderthals have significantly more CMNs in the least-lateral score category than does the modern human sample. Large LCTs are found to be strongly predictive of less lateral CMN position, although less lateral CMN position may exist in the absence of a large LCT. The complex ontogenetic pattern of CMN expression observed indicates that features of subadult and adult condylar morphology cannot be constructively compared without first considering subadult morphology on its own functional and developmental terms.


Asunto(s)
Fósiles , Hominidae/anatomía & histología , Cóndilo Mandibular/anatomía & histología , Adolescente , Adulto , Determinación de la Edad por el Esqueleto , Animales , Evolución Biológica , California , Niño , Preescolar , Historia Antigua , Humanos , Lactante , Recién Nacido , Paleodontología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...